Non-Symmetrical Collapse of an Empty Cylindrical Cavity Studied with Smoothed Particle Hydrodynamics
نویسندگان
چکیده
منابع مشابه
Incompressible smoothed particle hydrodynamics
We present a smoothed particle hydrodynamic model for incompressible fluids. As opposed to solving a pressure Poisson equation in order to get a divergence-free velocity field, here incompressibility is achieved by requiring as a kinematic constraint that the volume of the fluid particles is constant. We use Lagrangian multipliers to enforce this restriction. These Lagrange multipliers play the...
متن کاملSmoothed particle hydrodynamics
In this review the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed. Emphasis is placed on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied. 0034-4885/05/081703+57$90.00 © 2005 IOP Publishing Ltd Printed in the UK 1703
متن کاملSmoothed Particle Hydrodynamics :
We investigate the core mass distribution (CMD) resulting from numerical models of turbulent fragmentation of molecular clouds. In particular we study its dependence on the sonic rms Mach numberMs. We analyze simulations withMs ranging from 1 to 15 to show that, asMs increases, the number of cores increases as well, while their average mass decreases. This stems from the fact that high Mach num...
متن کاملSmoothed Particle Hydrodynamics with particle splitting , applied to self - gravitating collapse
We describe and demonstrate a method for increasing the resolution locally in a Smoothed Particle Hydrodynamic (SPH) simulation, by splitting particles. We show that in simulations of self-gravitating collapse (of the sort which are presumed to occur in star formation) the method is stable, and affords great savings in computer time and memory. When applied to the standard Boss & Bodenheimer te...
متن کاملSmoothed Particle Hydrodynamics with particle splitting , applied to self - gravitating collapse 3
We describe and demonstrate a method for increasing the resolution locally in a Smoothed Particle Hydrodynamic (SPH) simulation, by splitting particles. We show that in simulations of self-gravitating collapse (of the sort which are presumed to occur in star formation) the method is stable, and affords great savings in computer time and memory. When applied to the standard Boss & Bodenheimer te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2021
ISSN: 2076-3417
DOI: 10.3390/app11083500